Volltextsuche

Top Suchbegriffe



Dienstag, den 15. Oktober 2013 um 07:05 Uhr

Beim Blick tief ins Glas den Atomen beim `Tanzen´ zugeschaut

Physikern der Cornell University (NY) und der Universität Ulm ist es gelungen, zum ersten Mal auf atomarer Ebene dynamische Deformationsprozesse in Glas sichtbar zu machen. Diese laufen ab, wenn Glas verformt, also gebogen oder geschmolzen wird. Veröffentlicht wurden diese bahnbrechenden Entdeckungen heute in der aktuellen Ausgabe von Science.

Jeder hat es schon in der Hand gehabt und manch einer hat wohl mal ganz tief hineingeschaut: gemeint ist Glas. Aber so grundlegende Einsichten wie ein Physikerteam der Universitäten Cornell (NY) und Ulm in dieses besondere Material gewonnen haben, hat bisher noch niemand nehmen können. Dem internationalen Forscherteam, das durch einen Zufallsfund die dünnste Glasschicht der Welt entdeckt und dafür vor Kurzem einen Eintrag ins Guinness-Book erhalten hat, ist es nun gelungen, Deformationsprozesse in solch einer Glasschicht elektronenmikroskopisch sichtbar zu machen. Diese Verformungen treten auf, wenn Glas beispielsweise gebogen wird oder schmilzt. Veröffentlicht wurden diese fundamentalen Entdeckungen heute in der aktuellen Ausgabe von Science, einem der renommiertesten Wissenschaftsjournale der Welt.

Dafür wurde die ultradünne Glasschicht – sie ist nur eine Moleküllage dick – mit Hilfe eines Elektronenstrahls erhitzt. „Dabei entstehen im Übergang zwischen fester und flüssiger Phase Deformationen in der atomaren Struktur, die man nur unter einem besonderen höchstauflösenden Elektronenmikroskop sichtbar machen kann“, erklärt Ute Kaiser. Die Professorin für Experimentelle Physik leitet die Materialwissenschaftliche Elektronenmikroskopie an der Universität Ulm. Gemeinsam mit dem Physik-Professor David Muller, Ko-Direktor des Kavli Institute for Nanoscale an der Cornell Universität (NY) und den Doktoranden Pinshane Huang (Cornell) und Simon Kurasch (Uni Ulm) konnten die Forscher erstmals atomare Transformationen sichtbar machen, die bei einer Verformung ablaufen bevor Glas zerbricht. Eingesetzt wurde dafür das bildfehlerkorrigierte Transmissionselektronenmikroskop (TEM) der Universität Ulm.

Die Forscher haben so nicht nur den empirischen Nachweis erbracht, dass die Silizium- und Sauerstoffatome, aus denen Glas besteht, recht unregelmäßig in verschiedenen Polygonen angeordnet sind. „Wir konnten sogar filmen, wie sich im Schmelzvorgang Felder aus Fünf- und Siebenecken zu Sechsecken reorganisieren“, sagt Simon Kurasch, der als Wissenschaftlicher Mitarbeiter die Abbildungen in Ulm gemacht hat. „Man kann sozusagen den Atomen beim `Tanzen´ zusehen, und deren veränderte Atompositionen durch unsere speziell dafür entwickelte Auswertetechnik verfolgen“, erläutert Pinshane Huang, Doktorandin aus Mullers Team an der Cornell University. Die US-amerikanischen Physiker haben die elektronenmikroskopischen Aufnahmen aus Ulm aufbereitet und weiter ausgewertet. Dabei konnte auch die Verschiebung der Rotationswinkel in den Übergangsbereichen sichtbar gemacht und die Fluktuation zwischen festen zu flüssigen Bereichen quantifiziert werden.

Die Einblicke des Forscherteams in das dynamische Verhalten von Glas auf atomarer Ebene schließen eine große Forschungslücke. Bisher war es nur möglich, Annahmen zur atomaren Grundstruktur und ihren dynamischen Eigenschaften am Computermodell oder mit Hilfe verwandter Kolloidaler Strukturen zu überprüfen. „Nun haben wir zum ersten Mal überhaupt tatsächlich zeigen können, wie sich Silizium- und Sauerstoff-Atome wirklich verhalten, wenn Glas verbogen oder geschmolzen wird“, freut sich Ute Kaiser.


Den Artikel finden Sie unter:

http://www.uni-ulm.de/home2/presse/aktuelles-thema/beim-blick-tief-ins-glas-den-atomen-beim-tanzen-zugeschaut.html

Quelle: Universität Ulm (10/2013)


Veröffentlichungshinweis:
Imaging atomic rearrangements in two-dimensional silica glass: watching silica’s dance
Authors: Pinshane Y. Huang1, Simon Kurasch2†, Jonathan S. Alden1†, Ashivni Shekhawat3, Alexander A. Alemi3, Paul L. McEuen3,4, James P. Sethna3, Ute Kaiser2, and David A. Muller1,4*

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.