Volltextsuche

Top Suchbegriffe



Mittwoch, den 30. Januar 2013 um 06:36 Uhr

Berge und Täler aus Graphen

Bei komplizierten Oberflächenstrukturen stoßen auch Elektronenmikroskope an ihre Grenzen. Berechnungen der TU Wien gewähren trotzdem verlässliche Einblicke in die Mikrostruktur von Graphen.
Bringt man Graphen auf anderen Materialien auf, können sich sogenannte „Superstrukturen“ bilden – regelmäßige Anordnungen winziger Berge und Täler. Sie sind mit herkömmlicher Elektronenmikroskopie schwer zu untersuchen. Berechnungen der TU Wien erklären, warum Berge manchmal wie Täler aussehen können, und umgekehrt.

Graphen schlägt Wellen

Graphen besteht aus einer einzelnen Lage sechseckig angeordneter Kohlenstoff-Atome. Oft bringt man eine Graphen-Schicht auf einem Untergrund aus einem anderen Material auf, um es stabil zu halten. Fixiert man Graphen auf einem Iridium-Untergrund, lässt sich ein interessanter Effekt beobachten: „Die Graphen-Oberfläche bleibt nicht eben, sie formt regelmäßige Berge und Täler“, erklärt Florian Mittendorfer vom Institut für Angewandte Physik der TU Wien, der diese Oberflächen gemeinsam mit seinem Doktorats-Studenten Andreas Garhofer in umfangreichen Computersimulationen untersuchte.

Die Iridium-Atome ordnen sich in gleichseitigen Dreiecken an, deren 60-Grad-Winkel eigentlich gut zur Bienenwaben-Struktur der Graphen-Schicht passen würden. Allerdings entsprechen die Abstände zwischen den Kohlenstoff-Waben im Graphen nicht genau dem Abstand zwischen den Iridium-Atomen. Wenn eine Kohlenstoff-Wabe genau auf einem Iridium-Atom zu liegen kommt, dann sind die jeweiligen Nachbarn leicht gegeneinander verschoben – erst jede zehnte Kohlenstoff-Wabe befindet sich dann wieder genau auf einem Iridium-Atom. „Dadurch wölbt sich das Graphen und es ergibt sich ein Oberflächen-Muster aus winzigen Bergen und Tälern“, erklärt Florian Mittendorfer.

Berg und Tal verwechselt?

Diese Graphen-Strukturen sind wissenschaftlich sehr interessant – man könnte sie etwa verwenden, um genau in den Tälern Metall aufzudampfen und winzige Cluster herzustellen. Allerdings stellen die Strukturen selbst modernste Mikroskope vor ernste Probleme: „Wählt man einen ungünstigen Abstand zwischen Mikroskop-Spitze und Oberfläche, dann sehen plötzlich die Berge wie Täler aus, und umgekehrt. Bei einem ganz bestimmten Abstand erscheint für das Mikroskop die ganze Oberfläche glatt“, sagt Mittendorfer.
In der Elektronenmikroskopie führt man eine scharfe Spitze in winzigem Abstand über die Oberfläche, die untersucht werden soll. Bei Rastertunnelmikroskopen wird der elektrische Strom gemessen, der entsteht, wenn einzelne Elektronen aus der Oberfläche in die Mikroskop-Spitze überwechseln. Bei Rasterkraftmikroskopen hingegen wird aus der Kraft, die zwischen der Spitze und der Oberfläche wirkt, auf die Struktur der Oberfläche geschlossen.

„Dass man sowohl mit Rastertunnelmikroskopen als auch bei Rasterkraftmikroskopen auf Schwierigkeiten stößt, ist zunächst überraschend. Unsere Rechnungen erklären allerdings, warum das so ist“, sagt Florian Mittendorfer. Ein größerer Abstand zwischen der Graphenlage und der Mikroskopspitze bedeutet nicht automatisch, dass die Kraft zwischen Oberfläche und Spitze geringer wird, der Zusammenhang ergibt sich aus der Anordnung der Atome in der Oberfläche. „Die Krümmung der Graphen-Fläche führt zu einem komplexen Zusammenhang zwischen Abstand und Kraft“, erklärt Mittendorfer.


Den Artikel finden Sie unter:

http://www.tuwien.ac.at/aktuelles/news_detail/article/7995/

Quelle: Technische Universität Wien (01/2013)

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.