Volltextsuche

Top Suchbegriffe



Donnerstag, den 13. Oktober 2011 um 15:04 Uhr

Ferne Galaxien zeigen, wie sich der kosmische Nebel lichtet

Fertig! Einer Forschergruppe unter der Leitung von Prof. Axel Janke, Biodiversität und Klima Forschungszentrum (BiK-F), Frankfurt am Main, ist es vor kurzem gelungen, das Erbgut des Braunbären vollständig zu entziffern. Möglich wurde dies durch eine Zusammenarbeit mit dem norwegischen Forschungsinstitut Bioforsk und BGI, einem chinesischen Unternehmen, das sich auf Genom-Sequenzierung spezialisiert hat. Die Daten sollen nun mit den kürzlich veröffentlichten Erbgutinformationen von Eisbären und Pandabären verglichen werden. Damit könnte das Erbgut des Braunbären ausschlaggebend werden, wenn es darum geht, herauszufinden, welche Gene für die Anpassung an Umweltbedingungen entscheidend sind.
Braunbären sind gewaltige Tiere: die Riesen sind – gemeinsam mit dem Eisbär – die größten Landraubtiere der Welt. In einem der ersten deutschen Mithilfe des Very Large Telescope der ESO haben Wissenschaftler verschiedene Abschnitte einer besonders interessanten kosmischen Epoche untersucht: der Reionisationsära vor rund 13 Milliarden Jahren, während derer das Weltall für ultraviolettes Licht durchsichtig wurde. Indem sie einige der entferntesten bekannten Galaxien genau untersuchten, konnten die Wissenschaftler erstmals den zeitlichen Ablauf der Reionisation rekonstruieren. Sie fanden heraus, dass die Reionisation schneller als bisher angenommen verlaufen sein muss.
Ein internationales Astronomenteam hat das VLT als Zeitmaschine verwendet, um einige der entferntesten je entdeckten Galaxien zu beobachten und auf diese Weise in die ferne Vergangenheit unseres Universums zu schauen. Wir sehen diese Galaxien, deren Entfernungen die Wissenschaftler im Laufe der Untersuchung genau bestimmen konnten, so, wie sie zu einer Zeit zwischen 780 Millionen und einer Milliarde Jahren nach dem Urknall gewesen sind [1].

Die neuen Beobachtungen ermöglichen eine erste Rekonstruktion des zeitlichen Ablaufs der Reionisationsära [2] zu ermitteln. Während dieser Epoche lichtete sich der Nebel aus Wasserstoffgas im frühen Universum, so dass sich ultraviolettes Licht erstmals ungehindert ausbreiten konnte.

Die neuen Ergebnisse, die im Fachmagazin The Astrophysical Journal erscheinen werden, beruhen auf einer ausdauernden und systematischen Suche nach weit entfernten Galaxien, die das Team während der letzten drei Jahre mit dem VLT durchgeführt hat.

"Archäologen rekonstruieren den zeitlichen Verlauf der Vergangenheit aus Artefakten, die sie in verschiedenen Bodenschichten finden. Astronomen können noch mehr: Wir blicken direkt in die ferne Vergangenheit, indem wir das schwache Licht von Galaxien aus verschiedenen Stadien der Entwicklung des Kosmos beobachten", erklärt der Leiter des Projekts, Adriano Fontana vom italienischen INAF Osservatorio Astronomico di Roma. "Die Unterschiede zwischen den Galaxien verraten uns, wie sich die Bedingungen im Universum während dieser wichtigen Epoche verändert haben und auch, wie schnell diese Veränderungen vor sich gegangen sind."

Verschiedene chemische Elemente leuchten in charakteristischen Farben. Helles Leuchten bei ganz bestimmten Farben bezeichnen die Physiker als Emissionslinien. Eine der hellsten solcher Linien im ultravioletten Bereich ist die Lyman-Alpha-Linie, die von Wasserstoffgas erzeugt wird [3]. Sie ist leicht zu erkennen und hell genug, um selbst bei Beobachtungen von sehr schwachen und weit entfernten Galaxien nachweisbar zu sein.

Unter anderem haben die Forscher eben solche Lyman-Alpha-Linien bei fünf sehr weit entfernten Galaxien [4] nachgewiesen. Das ermöglichte zwei wichtige Schlüsse: Erstens zeigt das Ausmaß, um das die Linie in Richtung des roten Endes des Spektrums verschoben ist, die Entfernung der betreffenden Galaxie an. Daraus lässt sich wiederum ableiten, bis wie weit nach dem Urknall die Forscher bei der Beobachtung jeweils zurückblicken [5]. Auf diese Weise kann man eine Zeitreihe aufstellen, die zeigt, wie sich nach und nach die von den Galaxien ausgesandte Strahlung verändert. Zweitens zeigt die Untersuchung der Linien, ein wie großer Anteil des Lyman-Alpha-Licht - das von leuchtendem Wasserstoffgas innerhalb der Galaxien erzeugt wurde - zu verschiedenen Zeitpunkten wieder vom Nebel aus neutralem Wasserstoff geschluckt wurde, der den intergalaktischen Raum erfüllt.

"Zwischen den am weitesten entferntesten und den nächsten Galaxien in unserer Stichprobe beobachten wir einen dramatischen Unterschied bei der Menge des verschluckten ultravioletten Lichts", so Laura Pentericci vom INAF Osservatorio Astronomico di Roma, die Erstautorin der Veröffentlichung. "Als das Universum erst 780 Millionen Jahre alt war, gab es noch sehr viel neutralen Wasserstoff, der zwischen 10 und 50% des Volumens des gesamten Raumes ausfüllte. Doch schon 200 Millionen Jahre später war die Menge des neutralen Wasserstoffs auf ein dem heutigen Wert vergleichbares Niveau abgesunken. Offenbar ist die Reionisation schneller abgelaufen, als die Astronomen bisher gedacht hatten."

Zusätzlich geben die Beobachtungen des Teams Hinweise auf die Quelle des ultravioletten Lichtes, das die für die Reionisation nötige Energie geliefert hat. Zum Ursprung dieses Lichts gibt es verschiedene Theorien; zwei der prominentesten besagen, dass das Licht von der ersten Generation von Sternen im Universum stammt [6] oder aber von der intensiven Strahlung herrührt, die von Materie ausgesandt wird, wenn sie auf ein Schwarzes Loch zu stürzt.

"Die genaue Untersuchung des schwachen Lichtes von zwei der am weitesten entfernten Galaxien, die wir beobachtet haben, legt nahe, dass die allererste Generation von Sternen zum Energieausstoß zumindest beigetragen hat", so Eros Vanzella, Astronom am INAF Osservatorio Astronomico di Trieste und Mitglied des Forscherteams. "Dabei düfte es sich um sehr junge und massereiche Sterne gehandelt haben, die nur ein Fünftausendstel des Alters unserer Sonne, dafür aber das Hundertfache ihrer Masse besessen haben. Diese Sterne könnten in der Lage gewesen sein, den Urnebel aufzulösen und das Universum durchsichtig zu machen."

Die extrem präzisen Messungen, die nötig wären, diese Hypothese zu bestätigen oder zu widerlegen, sind nur durch Beobachtungen vom Weltall aus oder mit dem geplanten European Extremely Large Telescope der ESO möglich, welches das größte Teleskop der Welt sein wird, wenn es im kommenden Jahrzehnt den Betrieb aufnimmt.

Die Untersuchung dieses frühen Abschnittes in der Geschichte des Kosmos stellt eine große Herausforderung dar, denn hierzu sind genaue Beobachtungen von extrem weit entfernten und schwachen Galaxien nötig. Diese Aufgabe kann nur von den leistungsfähigsten Teleskopen der Welt erfüllt werden. Für die hier vorgestellte Studie nutzte das Team das große Lichtsammelvermögen der 8,2-Meter-Teleskope des VLT. Damit wurden spektroskopische Untersuchungen von Galaxien durchgeführt, die zuvor anhand von Beobachtungen mit dem ESA/NASA-Weltraumteleskop Hubble und bei besonders tiefen Aufnahmen mit dem VLT identifiziert worden waren.


Den Artikel finden Sie unter:

http://idw-online.de/de/news444868

Quelle: Informationsdienst Wissenschaft / Max-Planck-Institut für Astronomie (10/2011)

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.