Montag, den 16. April 2018 um 10:27 Uhr

Ein Lichtpuls flüchtet vor dem anderen und ändert dabei seine Farbe

Wissenschaftler der Technischen Universität Hamburg (TUHH), der ITMO-Universität in St. Petersburg, der Menoufia Universität, der Universität York, der Universität St. Andrews, des Tyndall-Instituts in Cork, der Sun Yat-sen Universität in Guangzhou und des Helmholtz-Zentrums Geesthacht haben in eigens hierfür entwickelten und hergestellten nanophotonischen Siliziumchips einen neuartigen Effekt realisiert.

In einem speziellen photonischen Kristallwellenleiter verfolgt hierbei ein nur sechs Billionstel Sekunden dauernder und sich schnell aus-breitender Lichtpuls (Pumpe) einen zunächst langsameren zweiten Lichtpuls (Signal). Der Signalpuls wird durch die Wechselwirkung mit dem Pumppuls beschleunigt, ändert seine Frequenz bzw. Farbe und eilt schließlich in Vorwärtsrichtung davon.

Der realisierte Effekt weist eine Analogie zu dem von theoretischen Physikern beschriebenen „Ereignishorizont“ in der Umgebung kosmischer schwarzer Löcher auf, also dem „Punkt ohne Wiederkehr“ für Lichtteilchen, die diese Wand von innen nach außen nicht durchqueren können und schließlich unweigerlich vom schwarzen Loch aufgesogen werden. Derartige Wände für Licht und Änderungen in der Geschwindigkeit und Farbe von Licht in der von den Wissenschaftlern nun beschriebenen Weise sind aus dem Alltagsleben völlig unbekannt und nur unter ganz besonderen Bedingungen beobachtbar.

Wie funktioniert das?
Der Pumppuls setzt Elektronen im Silizium frei und bildet dadurch eine sich schnell bewegende Wand, wobei die langlebigen Ladungsträger hinter der Front verbleiben (Abbildung 1 rechts). Die Bedingungen wurden durch das spezielle Design des photonischen Kristallwellenleiters so gewählt, dass der Signalpuls nicht in den Bereich hinter der Wand eindringen kann und stattdessen in Vorwärtsrichtung vor der heraneilenden Wand flüchtet. Da sowohl Frequenz als auch Wellenzahl des Signals hierbei verändert werden – was sehr ungewöhnlich ist-, handelt es sich um einen „indirekten“ photonischen Bandübergang (Abbildung 1 links), der nun sowohl theoretisch beschrieben, modelliert und im Experiment realisiert wurde.

Die unter Führung der Hamburger Wissenschaftler gewonnenen neuen Erkenntnisse der Grundlagenforschung sind darüber hinaus von großer Bedeutung für Anwendungen in der ultra-schnellen optischen Nachrichtentech-nik. Aufgrund des besonderen Designs können mit vergleichsweise niedrigen Pumpleistungen sehr große Effekte erzielt werden, wodurch das neuartige Verfahren für die „On-Chip“-Frequenzkonversion und für das rein opti-sche Schalten eingesetzt werden kann.


Den Artikel finden Sie unter:

https://intranet.tuhh.de/aktuell/pressemitteilung_einzeln.php?id=11495&Lang=de

Quelle: Technische Universität Hamburg-Harburg (04/2018)


Publikation:
Reflection from a free carrier front via an intraband indirect photonic transition, Mahmoud A. Gaafar, Dirk Jalas, Liam O’Faolain, Juntao Li, Thomas F. Krauss, Alexander Yu. Petrov, and Manfred Eich,
Nature Communications 9, 1447 (2018), doi 10.1038/s41467-018-03862-0
https://www.nature.com/articles/s41467-018-03862-0

Zurück nach Oben

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.