Volltextsuche

Top Suchbegriffe



Dienstag, den 11. Januar 2011 um 05:05 Uhr

Türsteher am Eingang zum Zellkraftwerk

Der so genannte TOM-Komplex ist das Tor zum Kraftwerk der Zelle: Ihn müssen zahlreiche Proteine passieren, die in den Mitochondrien benötigt werden. Ohne diese Eingangsschleuse könnten die Zellkraftwerke nicht funktionieren; schwere Erkrankungen wären die Folge.

Dass das Tor zum Mitochondrium kein statisches Gebilde ist, sondern flexibel reguliert werden kann, zeigt eine neue Studie im Magazin „Cell“, zu deren Autoren auch eine Gruppe um Prof. Albert Sickmann vom ISAS gehört. Gemeinsam mit der Arbeitsgruppe von Prof. Nikolaus Pfanner, Universität Freiburg, und weiteren Kooperationspartnern haben sie herausgefunden, dass Phosphorylierungen für die Funktion des TOM-Komplexes eine entscheidende Rolle spielen. Möglich wurde der Nachweis durch empfindliche analytische Methoden, wie sie am ISAS entwickelt werden.

„Es ist schon länger bekannt, dass die TOM-Proteine typische Phosphorylierungs-Sequenzen aufweisen“, erklärt Prof. Sickmann. „Bisher konnte jedoch niemand herausfinden, ob diese Phosphorylierungsstellen auch wirklich eine Funktion haben.“

Unter Phosphorylierung versteht man die Anheftung von Phosphatgruppen an bestimmte Regionen eines Proteins. Verantwortlich dafür sind so genannte Kinasen; ihre Gegenspieler, die Phosphatasen, können die Phosphatgruppen wieder entfernen. Proteine werden also nicht dauerhaft phosphoryliert, sondern in der Regel nur für einen begrenzten Zeitraum.

Diese flexible Markierung von Proteinen zählt zu den wichtigsten Regulationsmechanismen der Zelle und kann je nach Protein und Markierungsstelle sowohl aktivierend als auch hemmend wirken. Weil Phosphorylierungen jedoch so flüchtig sind, sind sie auch schwer zu analysieren: „Phosphorylierungsanalysen sind Spurenanalysen“, erklärt René Zahedi, der am ISAS Analysemethoden für die flüchtigen Markierungen entwickelt. „Um sie zu untersuchen, muss man entsprechende Anreicherungstechniken beherrschen.“

Zusätzlich ist der TOM-Komplex in die Membran des Mitochondriums eingebunden; wie alle Membranproteine haben daher auch TOM-Proteine einen wasserabweisenden Teil und verklumpen leicht, wenn man sie aus einer Zelle isolieren will. Dass die Wissenschaftler nur winzige Mengen der TOM-Proteine gewinnen konnten, erschwerte die Analyse zusätzlich.

Doch die Arbeitsgruppe um Albert Sickmann ist genau auf solche Fälle spezialisiert: Mit einer Kombination aus hochempfindlichen Chromatographie- und massenspektrometrischen Methoden analysieren sie seltene Proteine und Phosphorylierungsmuster.

„Leben bedeutet immer auch Dynamik“, sagt Prof. Sickmann. „Wer das Leben verstehen will, braucht Methoden, mit denen man dynamische Prozesse abbilden kann.“


Den Artikel finden Sie unter:

http://idw-online.de/pages/de/news403424

Quelle: Informationsdienst Wissenschaft / Leibniz-Institut für Analytische Wissenschaften - ISAS - e. V. (01/2011)

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.