Volltextsuche

Top Suchbegriffe



Dienstag, den 01. Juni 2010 um 10:03 Uhr

Schall macht Licht

Weltpremiere: PTB-Forscher übertragen eine höchststabile Frequenz über eine 480 km lange Glasfaserstrecke – Vergleich von optischen Uhren wird viel einfacher.

Soll Licht als Übermittler von Nachrichten dienen, dann kann man auf die bewährten Instrumente der Nachrichtentechnik zurückgreifen: Modulierte Lichtsignale wandern durch Glasfaserstrecken mit zwischengeschalteten Verstärkerstationen, die die durch Dämpfung schwächer gewordenen Lichtsignale wieder „auffrischen“. Schwieriger wird es, wenn das Licht selbst – genauer: seine Frequenz – die Nachricht ist und wenn diese Nachricht mit einer extremen Genauigkeit übertragen werden soll. Dabei geraten konventionelle Verstärker an ihre Grenzen. Eine dreiköpfige Forschergruppe in der Physikalisch-Technischen Bundesanstalt (PTB) hat hier nun die Lösung gefunden: Sie nutzen stimulierte Brillouin-Streuung. Das heißt, sie schicken dem Signal-Licht sogenanntes Pump-Licht mit genau definierter Frequenz entgegen, das in der Glasfaser akustische Wellen (im Teilchenbild: Phononen) anregt. An diesen akustischen Phononen wird wiederum das Pump-Licht gestreut, wobei die wenigen schon vorhandenen Signal-Photonen die Emission weiterer Signal-Photonen stimulieren. So entsteht eine mittels Schallwellen in Gang gehaltene Photonen-Lawine, die die Frequenz-Information mit extrem geringen Verlusten bis ans andere Ende der Glasfaser bringt. Auf einer Glasfaserstrecke von 480 km Länge haben die PTB-Forscher dies bereits nachgewiesen. Die relative Messunsicherheit, die sie erreichten, entspricht einer Sekunde in 16 Milliarden Jahren. Jetzt sollen noch längere Glasfaserstrecken folgen. Die neue Technik vereinfacht den Vergleich von neu entwickelten optischen Uhren, deren hohe Frequenzstabilität mit den üblichen Verfahren der Zeit- und Frequenzübertragung über Satelliten schwer zu fassen ist. Aber auch aus der Geodäsie sind schon Interessenten an die PTB-Forscher herangetreten. Und selbst Anwendungen in der Radioastronomie erscheinen sinnvoll.

Die PTB-Physiker Harald Schnatz und Gesine Grosche sind seit Jahren international führend bei der präzisen Messung und Übertragung von Frequenzen per Glasfaser. Dabei ist die Frequenz des Lichtes selber die Information: konkret etwa 195 • 1012 Schwingungen pro Sekunde. Eine erste Anwendung der noch jungen Technik war letztes Jahr die Fern-Messung des sogenannten optischen Uhrenübergangs in einer Magnesium-Uhr der Leibniz Universität Hannover. Die Wissenschaftler ermittelten jene charakteristische Frequenz, mit der die Atome im Magnesium angeregt werden können und die daher im Prinzip zur „Erzeugung“ von Sekunden genutzt werden kann – alles via 73 km Glasfaser von der PTB aus. „Bei diesen Messungen stehen an beiden Enden Femtosekunden-Frequenzkammgeneratoren, die eine feste Phasenbeziehung zwischen dem übertragenen Licht und den Frequenzstandards vor Ort herstellen“, erklärt Harald Schnatz. Die Frequenzstandards vor Ort sind die neue Magnesium-Uhr in Hannover und eine optische Uhr in der PTB. Die unterschiedlichen Frequenzen der beiden werden mit Hilfe der Femtosekunden-Frequenzkammgeneratoren synchronisiert, was man mit einem Getriebe vergleichen könnte. Schnatz fügt hinzu: „Wir waren anfangs selbst überrascht, wie gut dieses Gesamtsystem funktioniert.“ Nun wollten die Forscher größere Distanzen überbrücken und für gemeinsame Experimente eine Verbindung bis zum Max-Planck-Institut für Quantenoptik (MPQ) in Garching herstellen – eine Strecke von 900 km Glasfaser, die das Licht, falls man es nicht verstärkt, um den unvorstellbaren Faktor von 1020 abschwächt. Die Glasfaser muss dabei sogar zweimal durchlaufen werden, weil sie Teil eines riesigen Interferometers ist; damit wird die gesamte Glasfaserstrecke in ihrer optischen Länge stabilisiert. Konventionelle Verstärkertechniken stoßen dabei an ihre Grenzen. „Unser Doktorand Osama Terra hatte die zündende Idee, Brillouin-Verstärkung in der Glasfaser selbst zu nutzen“, sagt Gesine Grosche: „Das bringt uns gleich mehrere Vorteile: Erstens werden damit auch sehr schwache Signale noch verstärkt; die Signalleistung wird um einen Faktor bis zu einer Million vervielfacht. So benötigen wir wesentlich weniger Verstärkerstationen. Außerdem lassen sich gezielt sehr schmalbandige Lichtsignale verstärken.“ Das ist sehr günstig für die Untersuchung der schmalbandigen Uhrenübergänge von optischen Uhren.

Das Konzept hat die Gruppe sofort auf einer verlegten Glasfaserstrecke getestet: in Kooperation mit dem Deutschen Forschungsnetz (www.dfn.de) und der Firma GasLINE, die ein deutschlandweites Glasfasernetz betreiben. Mit nur einer Verstärker-Zwischenstation kam die hochstabile Frequenz auf einen Streckenrekord von 480 km Glasfaser – und das mit einer relativen Genauigkeit von 2 Teilen in 1018, was etwa einer Abweichung von einer Sekunde in 16 Milliarden Jahren entspricht. Damit erscheint nun selbst eine Verbindung zum französischen Partnerinstitut der PTB in Paris realistisch, um vielleicht in Zukunft gemeinsam an den besten Uhren zu arbeiten.

Bei der Fachkonferenz „European Time and Frequency Forum“ (EFTF) fanden die Arbeiten dann auch Anerkennung: Osama Terra gewann den Student Award der EFTF für seine Arbeit im Bereich „Timekeeping, Time and Frequency Transfer“. Die Ergebnisse sind zur Veröffentlichung eingereicht und auf dem Preprint-Server „arXiv“ verfügbar. Zurzeit arbeiten die drei Forscher und ihre Kollegen am MPQ Garching fieberhaft weiter an der Verbindung zwischen ihren Instituten. Sie wollen die hochstabile Referenzfrequenz der PTB bis in das Labor der Arbeitsgruppe von Professor Theodor Hänsch tragen, wo elementare Eigenschaften des Wasserstoffatoms höchstpräzise spektroskopisch gemessen werden.


Den ganzen Artikel finden Sie unter:

http://www.ptb.de/de/aktuelles/archiv/presseinfos/pi2010/pitext/pi100531.html

Quelle: Physikalisch-Technische Bundesanstalt (05/2010)

Um unsere Webseite für Sie optimal zu gestalten und fortlaufend verbessern zu können, verwenden wir Cookies. Durch die weitere Nutzung der Webseite stimmen Sie der Verwendung von Cookies zu.
Weitere Informationen zu Cookies erhalten Sie in unserer Datenschutzerklärung.